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Continuous mining machine control using the
Real-time Control System

John Albert Horst' and Anthony J. Barbera^

ABSTRACT
Application of the Real-time Control System (RCS) reference model to a simulated

underground coal mining machine is described. RCS is characterized by explicit software modules
that perform task decomposition, sensory processing, and world modelling functions at different

hierarchical levels. We use a detailed and sharply defined approach to RCS design characterized by
task-oriented problem analysis, generic software "objects," rule-based control (using finite state

machines), cyclic execution of manually scheduled processes, and generic communications
interfaces.

1 . BACKGROUND
The theory, design, testing, and

implementation of large-scale intelligent

control systems has been the focus of much
effort at the Advanced Research and
Technology Corporation (ATR) and the

National Institute of Standards and
Technology (NIST). NIST is particularly

concerned with the development and
dissemination of reference models that will

improve all aspects of real-time control

system development. An example of such a

model developed at NIST is the Real-time

Control System (RCS) model [Albus 89,

Albus 92, (Juintero 92, Huang 92].

The RCS reference model specifies

hierarchical levels of control where each level

has a characteristic spatial and temporal
purview. The critical components of the

system are control, sensing, and world
modelling. In RCS, each hierarchical level can

have multiple modules each of which contains

sensing, world modelling, and control

functions. The approach to RCS design

described in this paper is a more sharply
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Corp. (ATR), 15210 Dino Dr., Burtonsville, MD 20866

defined version of RCS than that described in

Albus 89. For the sake of clarity we will refer

to this approach as RCS throughout the paper.

Our focus is the current status of an
implementation of RCS for the control of a

continuous mining machine used in

underground coal mining. This work is being
performed by NIST and ATR in support of the

US Bureau of Mines (BOM). BOM is

involved in a long term effort to bring aspects

of underground coal mining under computer
control in order to enhance the health and
safety of coal miners.

2 . CONTINUOUS MINING
MACHINE CONTROL SYSTEM
DESIGN USING RCS

The US Bureau of Mines (BOM) is

developing prototype systems that perform all

the typical tasks of a continuous mining
machine (CM) under computer control

[Schnakenberg 92]. These tasks can be
grouped into two general areas, namely, free

space motion and cutting.

Continuous mining machines have
appendage controls that are of the on-off or

"bang-bang" type. This type of actuation in

concert with the complicated coordination and
sequencing required by the coal cutting

control task is well served by a rule-based

design approach like RCS.
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2.1 SCENARIO
This section gives a realistic scenario of

the operation of a CM performing a box cut as

might be performed in an underground coal

mine. The highest level task this control

system has implemented is a box cut of

operator specified length. A drawing of a CM
executing a box cut is in figure 1

.

A box cut is ready to be performed
when the cutting drum of the CM is close to

the coal face. When in this position (assuming
no other errors), the cutting drum is raised to

the proper height and turned on. The CM
trams forward toward the coal face. During
this initial tram forward, the current load on
the cutting drum motor is monitored. If this

load exceeds threshold, the CM has contacted

coal and is at the face (the place where the

cutting operations occur). In addition, the

orientation of the CM is closely monitored for

deviation from the proper orientation. This is

called the initial_approach_face task.

Within a box cut operation, the

initial_approach_face task precedes the first

execution of a sump_shear_cusp task. After

completion of the initial_approach_face task,

the sump begins with the drum at the ceiling

and rotating. During a sump the following

occurs: 1) the gathering pan is put in the float

position, 2) a command is sent to an operator

to put the tail of the conveyor belt into the

correct position for deposit of coal into a

shuttle car or continuous haulage conveyance,

and 3) the CM trams forward about hdf the

diameter of the cutting drum. This event

triggers the start of the shear operation.

During a shear, the following occurs: 1)

the stabilization jack is lowered, 2) the cutting

drum remains on and is lowered, and 3) the

gathering head and conveyor are turned on.

The latter commences only if enough coal has
piled up to warrant turning on the conveyance
systems and a status message is received from
the operator interface module stating that the

positioning of the conveyor tail is done.
A shear may be paused if loose coal
needs to be removed by the conveyance
system and a signal has not been
received from the operator that the

conveyor tail (see figure 1) is in position

over the haulage system.

The shear task is complete when
the cutting drum boom reaches the

appropriate angle down near the floor of
the mine. The choice of an appropriate

angle is dependent on whether the coal

seam is level or sloped fore-aft at that

point. Due to the cylindrical shape of the

box cut cutting drum, the sump and shear
operations leave a residue of coal, called

the cusp, on the mine floor between the

cutting drum and the gathering pan. The
cusp is removed by raising the stabilization

jack and tramming in reverse with the cutting

drum on. This completes the first

sump_shear_cusp cycle.

The next task is the approach_face
command which in most respects is the same
as the initial_approach_face command
described above. During approach_face, the

exact location of the face relative to the CM is

now known which was not true during
initial_approach_face. Therefore, after raising

the cutting drum boom as before, the CM need
only tram forward a specified distance after

which contact with the face is guaranteed; no
cutter current load monitoring is required.

However, in a final system it would be useful

to monitor cutter current load as well as CM
position during the approach_face command
(this would assure robust performance of each
approach_face command). Another
sump_shear_cusp cycle is executed exactly as

before. At this point in the box cut task, a

sequence of approach_face and
sump_shear_cusp commands are executed
until the total cut distance is reached. The box
cut task is now complete.

figure 1 : A continuous mining machine executing a
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2.2 TASK TREE
After developing the

scenario we generate tasks

whose relationship can be

described in the form of a

tree as in figure 2. In

figure 2, each task name is

prefixed by a two letter

mnemonic where each
mnemonic corresponds to

the controller module within

which it is grouped.

2.3 STATE MACfflNE
EXAMPLE: A
SUMP_SHEAR_CUSP
COMMAND

RCS adopts a finite

state machine model where
each command has finitely

many internal states and
responds to input signals by
performing a transition to a

new state. While performing

a box cut, a fundamental
operation of the CM is the

sump_shear_cusp command for removing
coal (as described in section 2.1 above). This

command is decomposed into lower level

commands and delivered to its three

figure 2: Task tree for a box cut of a continuous mining machine

subordinate control modules within a decision

state table. This decomposition can be seen in

the task tree of figure 2. The task tree is

limited in that it only reveals the set of tasks

that are derived from each higher level task.

The task tree neither reveals the

conditions that trigger the

execution of each subordinate

task, nor does it specify the

precise order in which each
subordinate task is executed.
Therefore, a decision structure of

some sort is required beyond a

simple task decomposition. The
state graph and state table for this

specific command are given in

figure 3.

Conditions Actions
Commands to subordinates

Current Next Coal removal Vehicle Coal cutting
Event State State Jobs (cr) guidance (vg) (cc)

New Command DO SI set pose for sump cr_sump vg_move to pose cc_sump
El:sump distance reached SI S2 none cr_shear vg_halt cc_shear

E2;popped out of shear S2 S3 none cr_halt vg_halt cc..shear correct

E3: sh^ correct done S3 SI set pose for sump cr_sump vg_move to pose cc_sump
E4;too much loose coal S2 S4 none cr halt vg_halt cc_halt

ESrtail in position S4 S2 coal removal cr_shear vg_halt cc_shear

E6:shear complete S2 S5 set pose for cusp cr_cusp vg_move to pose cc_cusp
E7:cusp complete S5 Done none cr halt vg_halt cc halt

Otherwise Dl Same NOP NOP NOP NOP

Di => don’t care condition Sn => n^h state En => nth event

figure 3: A state graph and state table for a sump_shear_cusp task

2.4 DESIGN OF THE
CONTROLLER HIERARCHY

Throughout the process of
scenario development and task

decomposition, tasks of the same
level of abstraction are grouped
into what are called controllers.

At the lowest level, the

controllers are matched with the

appropriate actuators. At all

3



figure 4: Continuous mining machine control, simulation, and animation hierarchy

levels, sensors along with world model values

and functions are matched to the appropriate

controllers. The relationship between the task

tree and controller hierarchy can be seen by
comparing the task tree of figure 2 and the

controller hierarchy of figure 4. The two letter

mnemonic prefix on each task in figure 2

describes the controller in figure 4 to which
that task belongs.

Controllers are the key ‘objects’ in the

RCS methodology. Tasks are encapsulated

within each controller. The communications
interface to its supervisor and subordinate(s)

is of the same form for all controller ‘objects’.

Each controller is responsible to synchronize

and coordinate the tasks of all its

subordinates. Tasks at similar levels of

abstraction are grouped into controllers. For
example, we grouped all cutting related tasks

at a certain level into a single controller (coal

cutting) and, similarly, grouped tasks relating

to coal removal into the coal removal
controller. This design effort produces the

controller hierarchy shown in figure 4. As the

number of tasks grows in a particular

controller, it can be split up into two or more
separate controllers.

In this application, we have developed
and used software templates containing that

which is common to all controllers. Using a

controller template the system designer can
simply enter the details unique to that

controller while not having to repeat the

standard parts of the code. The existence of
these templates is a modest step towards the

automation of RCS design.

One characteristic of all controllers is

the processing pattern [Quintero 92]. All

controller code is divided into pre-processing,

decision-processing, and post-processing
which are executed in order. Pre-processing

includes reading commands and status, debug-
related processing, executing sensory and
world model functions, and on-line planning.

Decision processing includes plan specific

sensory processing, world model processing,

planning, and decision making (as in figure 3).

Finally, post-processing includes writing

4
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figure 5: Operator interface and animation screen

commands and status, more debug-related

processing, and sensory and world model
processing.

2.5 PROCESSING AND SYSTEM
ASPECTS

2.5.1 CYCLIC PROCESSING WITHOUT
INTERRUPTS

Real-time control is often accomplished

through the use of automatic scheduling of

prioritized processes using interrupts (pre-

emption) and time slicing. In contrast, RCS,
as herein described, uses manual scheduling

of cyclically executing processes. RCS

processes can be executed serially or in

parallel. Parallel execution removes the

requirement to maintain synchrony and so

there are concomitant latencies. Latencies are

a necessary sacrifice, since we want the

freedom to move processes to other CPUs
with a minimum of system software changes.

Time slicing is also done manually in RCS by
requiring that each real-time process (e.g.,

controllers and simulators) be designed to

execute to completion within a period of time

such that real-time system response is assured.

Both interrupt driven methods and RCS
can achieve real-time execution. However, the
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use of interrupts tends to complicate the code

more than necessary, particularly as the

number of real-time processes increases.

Additionally, if one allows a real-time task to

be interrupted, the state of the system or world

may have changed in an unknown way after

servicing the interrupt. One needs to handle a

prohibitive amount of exceptions in order to

determine what an interrupt would mean at

any point in the control code. Since processor

costs are comparatively low, we see little

reason to employ pre-emptive scheduling

which was created to optimize processor

usage.

Manually scheduled, cyclically executed

controllers help achieve determinism,
allowing for an assured real-time response as

long as the maximum execution times of

controllers are known and there is never any

looping within processes causing the rest of

the system to wait. We might also describe

this method of scheduling as static process

scheduling, since the processes are executed

according to a fixed schedule. Each process is

designed to execute repeatedly, and on each
invocation, it will execute to its conclusion.

Each process must be executed at a specified

frequency. If the resources of the system are

insufficient to meet the required schedule, it

can be discovered by the scheduler using the

debugging tools provided.

2.5.2 SIMULATION, ANIMATION, AND
OPERATOR INTERFACE

Simulation, animation and operator

interface are critical components in the

development and operation of control

systems. Simulation and animation are used in

our implementation as a safe, cost-effective

way to debug and refine task knowledge. All

simulation (control, sensor, actuator, and
environment) runs on a single PC (under

DOS™) so that it can be made to run

deterministically (without interruption). The
animation code resides on a Silicon Graphics
IRISTM3 workstation under a non-
deterministic operating system (as illustrated

in figure 6). This is because the CM and its

appendages need only move in a manner

^Reference to specific products does not imply

endorsement by NIST or the US BOM.

realistic to the human observer for animation
to be effective.

Much of the animation code used in the

CM control implementation is portable from
application to application. Similar code has
been written for other RCS applications
following the RCS design philosophy
[Huang 92]. The animation hierarchy is

illustrated within figure 4. The existing
animation code is written in ‘C’ on the Silicon

Graphics IRIS™ (SGI™) using ‘GL’ (an
SGI™ specific ‘C’ library of predefined
graphics functions).

The animation and operator interface

screen is shown in figure 5. The upper right

hand section of figure 5 is the 3D animation
portion of the CM in a coal mine. The
simulated coal seam has seam height color
coded. The coal seam heights are values from
an interpolated random w5k surface function.

As the CM cuts into coal, the simulated coal

seam is seen to be removed. However, there

was a significant tradeoff between resolution

in the coal seam and the update rate of the

animation. The lower right hand comer of
figure 5 shows a dynamic graph of the

simulated seam height function above the

cutting drum over time versus the actual

cutting drum height over time. These
functions can also be viewed over space rather

than time. In the lower left hand comer of
figure 5 is the operator interface section. If in

teleoperation mode, the user can change CM
velocity, orientation, cutting dmm height, and
conveyor tail pitch and yaw. If in autonomous
mode, only the tail pitch and yaw can be
change by the operator. We used small ‘up

figure 6: Hardware tools
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and down’ buttons on the screen to allow the

operator to make these adjustments. Halfway

up on the left hand side of figure 5 is the 2

dimiensional animated view of the CM in the

mine. We expect that this would only be a

local area in the mine defined by the current

position of the CM. The upper left hand

comer of figure 5 shows the mode switching

section, in which the operator can change

between cutting modes and operation modes.

The cutting modes allow the operator to cut

into the rock^, cut at the coal rock interface, or

leave some coal^. The operation modes allow

the operator to teleoperate or run the CM
autonomously.

A graphics interface is defined which
allows the user to change the viewpoint and

scene through mouse control. Also available

in the animation code are several other

operator interface capabilities, for example, 1)

position control of the conveyor tail and 2)

goal point entry for the movement of the

machine in the mine (either for cutting or

tramming in free space).

The following design tasks convert the

‘generic’ animation code into the CM
implementation:

1) Draw the continuous mining machine, i.e.,

specify the coordinates of its body and all its

appendages in three dimensional space.

2) Get the SGI™ to read the appendage position

values from the PC via the common memory (as

in figure 6) and write operator interface values

to the same common memory.

3) Adjust the existing animation code to draw
the mining machine on the screen cyclically

based on both the raw values and the user
specified viewpoint.

4) Integrate the operator interface as required.

For the CM control implementation, we have
control of the conveyor tail and the goal position

for CM free space navigation and cutting.

5) Allow the user interface to give the user the

ability to change the scene and viewpoint with
the mouse or keyboard.

6) Incorporate the display of all common
memory values

3 . CONCLUSION
Control of the continuous mining

machine involves the complex coordination

and sequencing of operations. However, at the

^e.g., if the seam height is small.

^e.g., if the coal at the interface is of poor

quality.

lowest level, the operations are very simple
due to the bang-bang nature of the machine.
As a result, the coal mining example further

reinforces our belief that this type of problem
is very easily handled by a hierarchical, rule-

based approach. RCS, as described in this

paper, is such an approach. In brief, the

methodology consists of 1) a natural,

hierarchical decomposition of tasks, 2) the

natural grouping of tasks into controllers with
generic processing patterns and generic
interfaces, 3) the synchronization and
coordination of tasks using state graphs, and

4) real-time performance through cyclic

execution. The simplicity of the method is one
of its major advantages. Mining automation
engineers and researchers at the US BOM
have warmly received this approach and
profited from its use.
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